Three dimensional MEMS microfluidic perfusion system for thick brain slice cultures.
نویسندگان
چکیده
In vitro tissue culture models are often benchmarked by their ability to replicate in vivo function. One of the limitations of in vitro systems is the difficulty in preserving an orchestrated cell population, especially for generating three-dimensional tissue equivalents. For example, tissue-engineering applications involve large high-density constructs, requiring a perfusing system that is able to apply adequate oxygen and nutrients to the interior region of the tissue. This is particularly true with respect to thick tissue sections harvested for in vitro culture. We have fabricated a microneedle-based perfusion device for high-cell-density in vitro tissue culture from SU-8 photosensitive epoxy and suitable post-processing. The device was tested for its ability to improve viability in slices of harvested brain tissue. This model was chosen due to its acute sensitivity to disruptions in its nutrient supply. Improved viability was visible in the short term as assessed via live-dead discriminating fluorescent staining and confocal microscopy. This perfusion system opens up many possibilities for both neurobiological as well as other culture systems.
منابع مشابه
Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability.
Brain slice preparations are well-established models for a wide spectrum of in vitro investigations in the neuroscience discipline. However, these investigations are limited to acute preparations or thin organotypic culture preparations due to the lack of a successful method that allows culturing of thick organotypic brain slices. Thick brain slice cultures suffer necrosis due to ischemia deep ...
متن کاملMicrofluidic engineered high cell density three-dimensional neural cultures.
Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approach...
متن کاملMicrofluidic Culture Chamber for the Long-term Perfu- Sion and Precise Chemical Stimulation of Organotypic Brain Tissue Slices
We have developed a microfluidic perfusion-based culture system to study long-term in-vitro responses of organotypic brain slices exposed to localized neurochemical stimulation. Using this microperfusion chamber we show that hippocampal organotypic brain slices cultures grown on nitrocellulose membranes can be stimulated for up to 24 hours in our experimental setup while preserving tissue viabi...
متن کاملMultiphysics simulation of a microfluidic perfusion chamber for brain slice physiology
Understanding and optimizing fluid flows through in vitro microfluidic perfusion systems is essential in mimicking in vivo conditions for biological research. In a previous study a microfluidic brain slice device (microBSD) was developed for microscale electrophysiology investigations. The device consisted of a standard perfusion chamber bonded to a polydimethylsiloxane (PDMS) microchannel subs...
متن کاملA microperfused incubator for tissue mimetic 3D cultures.
High density, three-dimensional (3D) cultures present physical similarities to in vivo tissue and are invaluable tools for pre-clinical therapeutic discoveries and development of tissue engineered constructs. Unfortunately, the use of dense cultures is hindered by intra-culture transport limits allowing just a few layer thick cultures for reproducible studies. In order to overcome diffusion lim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical microdevices
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2007